3.218 \(\int \frac {\sin ^2(c+d x)}{(a+b \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=152 \[ \frac {3 b \sin (c+d x)}{a^3 d}-\frac {3 \sin (c+d x) \cos (c+d x)}{2 a^2 d}-\frac {2 b \left (2 a^2-3 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^4 d \sqrt {a-b} \sqrt {a+b}}+\frac {x \left (a^2-6 b^2\right )}{2 a^4}+\frac {\sin (c+d x) \cos ^2(c+d x)}{a d (a \cos (c+d x)+b)} \]

[Out]

1/2*(a^2-6*b^2)*x/a^4+3*b*sin(d*x+c)/a^3/d-3/2*cos(d*x+c)*sin(d*x+c)/a^2/d+cos(d*x+c)^2*sin(d*x+c)/a/d/(b+a*co
s(d*x+c))-2*b*(2*a^2-3*b^2)*arctanh((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/a^4/d/(a-b)^(1/2)/(a+b)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.57, antiderivative size = 152, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {3872, 2889, 3048, 3050, 3023, 2735, 2659, 208} \[ -\frac {2 b \left (2 a^2-3 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^4 d \sqrt {a-b} \sqrt {a+b}}+\frac {x \left (a^2-6 b^2\right )}{2 a^4}+\frac {3 b \sin (c+d x)}{a^3 d}-\frac {3 \sin (c+d x) \cos (c+d x)}{2 a^2 d}+\frac {\sin (c+d x) \cos ^2(c+d x)}{a d (a \cos (c+d x)+b)} \]

Antiderivative was successfully verified.

[In]

Int[Sin[c + d*x]^2/(a + b*Sec[c + d*x])^2,x]

[Out]

((a^2 - 6*b^2)*x)/(2*a^4) - (2*b*(2*a^2 - 3*b^2)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^4*Sqr
t[a - b]*Sqrt[a + b]*d) + (3*b*Sin[c + d*x])/(a^3*d) - (3*Cos[c + d*x]*Sin[c + d*x])/(2*a^2*d) + (Cos[c + d*x]
^2*Sin[c + d*x])/(a*d*(b + a*Cos[c + d*x]))

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2889

Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^m*(1 - Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f,
 m, n}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2*m, 2*n])

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3048

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C + A*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[
e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m
 - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + c*C*(b*c*m + a*d*(n + 1)) - (A*d*(a*d*(n +
 2) - b*c*(n + 1)) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b*(A*d^2*(m + n + 2) + C*(c^2*(
m + 1) + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] &
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3050

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)
*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n
 + 1))/(d*f*(m + n + 2)), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n
*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (A*b*d*(m + n + 2) - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*
x] + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0
] && NeQ[c, 0])))

Rule 3872

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[((g*C
os[e + f*x])^p*(b + a*Sin[e + f*x])^m)/Sin[e + f*x]^m, x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {\sin ^2(c+d x)}{(a+b \sec (c+d x))^2} \, dx &=\int \frac {\cos ^2(c+d x) \sin ^2(c+d x)}{(-b-a \cos (c+d x))^2} \, dx\\ &=\int \frac {\cos ^2(c+d x) \left (1-\cos ^2(c+d x)\right )}{(-b-a \cos (c+d x))^2} \, dx\\ &=\frac {\cos ^2(c+d x) \sin (c+d x)}{a d (b+a \cos (c+d x))}-\frac {\int \frac {\cos (c+d x) \left (2 \left (a^2-b^2\right )-3 \left (a^2-b^2\right ) \cos ^2(c+d x)\right )}{-b-a \cos (c+d x)} \, dx}{a \left (a^2-b^2\right )}\\ &=-\frac {3 \cos (c+d x) \sin (c+d x)}{2 a^2 d}+\frac {\cos ^2(c+d x) \sin (c+d x)}{a d (b+a \cos (c+d x))}+\frac {\int \frac {3 b \left (a^2-b^2\right )-a \left (a^2-b^2\right ) \cos (c+d x)-6 b \left (a^2-b^2\right ) \cos ^2(c+d x)}{-b-a \cos (c+d x)} \, dx}{2 a^2 \left (a^2-b^2\right )}\\ &=\frac {3 b \sin (c+d x)}{a^3 d}-\frac {3 \cos (c+d x) \sin (c+d x)}{2 a^2 d}+\frac {\cos ^2(c+d x) \sin (c+d x)}{a d (b+a \cos (c+d x))}-\frac {\int \frac {-3 a b \left (a^2-b^2\right )+\left (a^2-6 b^2\right ) \left (a^2-b^2\right ) \cos (c+d x)}{-b-a \cos (c+d x)} \, dx}{2 a^3 \left (a^2-b^2\right )}\\ &=\frac {\left (a^2-6 b^2\right ) x}{2 a^4}+\frac {3 b \sin (c+d x)}{a^3 d}-\frac {3 \cos (c+d x) \sin (c+d x)}{2 a^2 d}+\frac {\cos ^2(c+d x) \sin (c+d x)}{a d (b+a \cos (c+d x))}+\frac {\left (b \left (2 a^2-3 b^2\right )\right ) \int \frac {1}{-b-a \cos (c+d x)} \, dx}{a^4}\\ &=\frac {\left (a^2-6 b^2\right ) x}{2 a^4}+\frac {3 b \sin (c+d x)}{a^3 d}-\frac {3 \cos (c+d x) \sin (c+d x)}{2 a^2 d}+\frac {\cos ^2(c+d x) \sin (c+d x)}{a d (b+a \cos (c+d x))}+\frac {\left (2 b \left (2 a^2-3 b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-a-b+(a-b) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{a^4 d}\\ &=\frac {\left (a^2-6 b^2\right ) x}{2 a^4}-\frac {2 b \left (2 a^2-3 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^4 \sqrt {a-b} \sqrt {a+b} d}+\frac {3 b \sin (c+d x)}{a^3 d}-\frac {3 \cos (c+d x) \sin (c+d x)}{2 a^2 d}+\frac {\cos ^2(c+d x) \sin (c+d x)}{a d (b+a \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.33, size = 178, normalized size = 1.17 \[ \frac {\frac {16 b \left (2 a^2-3 b^2\right ) \tanh ^{-1}\left (\frac {(b-a) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\sqrt {a^2-b^2}}+\frac {a^3 (-\sin (3 (c+d x)))-a \left (a^2-24 b^2\right ) \sin (c+d x)+4 a \left (a^2-6 b^2\right ) (c+d x) \cos (c+d x)+6 a^2 b \sin (2 (c+d x))+4 a^2 b c+4 a^2 b d x-24 b^3 c-24 b^3 d x}{a \cos (c+d x)+b}}{8 a^4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[c + d*x]^2/(a + b*Sec[c + d*x])^2,x]

[Out]

((16*b*(2*a^2 - 3*b^2)*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2] + (4*a^2*b*c - 24
*b^3*c + 4*a^2*b*d*x - 24*b^3*d*x + 4*a*(a^2 - 6*b^2)*(c + d*x)*Cos[c + d*x] - a*(a^2 - 24*b^2)*Sin[c + d*x] +
 6*a^2*b*Sin[2*(c + d*x)] - a^3*Sin[3*(c + d*x)])/(b + a*Cos[c + d*x]))/(8*a^4*d)

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 551, normalized size = 3.62 \[ \left [\frac {{\left (a^{5} - 7 \, a^{3} b^{2} + 6 \, a b^{4}\right )} d x \cos \left (d x + c\right ) + {\left (a^{4} b - 7 \, a^{2} b^{3} + 6 \, b^{5}\right )} d x - {\left (2 \, a^{2} b^{2} - 3 \, b^{4} + {\left (2 \, a^{3} b - 3 \, a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) - {\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {a^{2} - b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) + {\left (6 \, a^{3} b^{2} - 6 \, a b^{4} - {\left (a^{5} - a^{3} b^{2}\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (a^{4} b - a^{2} b^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{7} - a^{5} b^{2}\right )} d \cos \left (d x + c\right ) + {\left (a^{6} b - a^{4} b^{3}\right )} d\right )}}, \frac {{\left (a^{5} - 7 \, a^{3} b^{2} + 6 \, a b^{4}\right )} d x \cos \left (d x + c\right ) + {\left (a^{4} b - 7 \, a^{2} b^{3} + 6 \, b^{5}\right )} d x - 2 \, {\left (2 \, a^{2} b^{2} - 3 \, b^{4} + {\left (2 \, a^{3} b - 3 \, a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \arctan \left (-\frac {\sqrt {-a^{2} + b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) + {\left (6 \, a^{3} b^{2} - 6 \, a b^{4} - {\left (a^{5} - a^{3} b^{2}\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (a^{4} b - a^{2} b^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{7} - a^{5} b^{2}\right )} d \cos \left (d x + c\right ) + {\left (a^{6} b - a^{4} b^{3}\right )} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^2/(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

[1/2*((a^5 - 7*a^3*b^2 + 6*a*b^4)*d*x*cos(d*x + c) + (a^4*b - 7*a^2*b^3 + 6*b^5)*d*x - (2*a^2*b^2 - 3*b^4 + (2
*a^3*b - 3*a*b^3)*cos(d*x + c))*sqrt(a^2 - b^2)*log((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 + 2*sqr
t(a^2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2))
 + (6*a^3*b^2 - 6*a*b^4 - (a^5 - a^3*b^2)*cos(d*x + c)^2 + 3*(a^4*b - a^2*b^3)*cos(d*x + c))*sin(d*x + c))/((a
^7 - a^5*b^2)*d*cos(d*x + c) + (a^6*b - a^4*b^3)*d), 1/2*((a^5 - 7*a^3*b^2 + 6*a*b^4)*d*x*cos(d*x + c) + (a^4*
b - 7*a^2*b^3 + 6*b^5)*d*x - 2*(2*a^2*b^2 - 3*b^4 + (2*a^3*b - 3*a*b^3)*cos(d*x + c))*sqrt(-a^2 + b^2)*arctan(
-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*sin(d*x + c))) + (6*a^3*b^2 - 6*a*b^4 - (a^5 - a^3*b^2)*co
s(d*x + c)^2 + 3*(a^4*b - a^2*b^3)*cos(d*x + c))*sin(d*x + c))/((a^7 - a^5*b^2)*d*cos(d*x + c) + (a^6*b - a^4*
b^3)*d)]

________________________________________________________________________________________

giac [A]  time = 0.26, size = 240, normalized size = 1.58 \[ -\frac {\frac {4 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a - b\right )} a^{3}} - \frac {{\left (a^{2} - 6 \, b^{2}\right )} {\left (d x + c\right )}}{a^{4}} + \frac {4 \, {\left (2 \, a^{2} b - 3 \, b^{3}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-a^{2} + b^{2}}}\right )\right )}}{\sqrt {-a^{2} + b^{2}} a^{4}} - \frac {2 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 4 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 4 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{2} a^{3}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^2/(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

-1/2*(4*b^2*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 - a - b)*a^3) - (a^2 -
6*b^2)*(d*x + c)/a^4 + 4*(2*a^2*b - 3*b^3)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(
1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(-a^2 + b^2)))/(sqrt(-a^2 + b^2)*a^4) - 2*(a*tan(1/2*d*x + 1/2*
c)^3 + 4*b*tan(1/2*d*x + 1/2*c)^3 - a*tan(1/2*d*x + 1/2*c) + 4*b*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x + 1/2*c)^
2 + 1)^2*a^3))/d

________________________________________________________________________________________

maple [B]  time = 0.44, size = 325, normalized size = 2.14 \[ -\frac {2 b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d \,a^{3} \left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b -a -b \right )}-\frac {4 b \arctanh \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{d \,a^{2} \sqrt {\left (a -b \right ) \left (a +b \right )}}+\frac {6 b^{3} \arctanh \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{d \,a^{4} \sqrt {\left (a -b \right ) \left (a +b \right )}}+\frac {\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )}{d \,a^{2} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+\frac {4 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b}{d \,a^{3} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+\frac {4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b}{d \,a^{3} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d \,a^{2} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-\frac {6 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{2}}{d \,a^{4}}+\frac {\arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \,a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(d*x+c)^2/(a+b*sec(d*x+c))^2,x)

[Out]

-2/d*b^2/a^3*tan(1/2*d*x+1/2*c)/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b-a-b)-4/d*b/a^2/((a-b)*(a+b))^(1
/2)*arctanh(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))+6/d*b^3/a^4/((a-b)*(a+b))^(1/2)*arctanh(tan(1/2*d*x+
1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))+1/d/a^2/(1+tan(1/2*d*x+1/2*c)^2)^2*tan(1/2*d*x+1/2*c)^3+4/d/a^3/(1+tan(1/2*d
*x+1/2*c)^2)^2*tan(1/2*d*x+1/2*c)^3*b+4/d/a^3/(1+tan(1/2*d*x+1/2*c)^2)^2*tan(1/2*d*x+1/2*c)*b-1/d/a^2/(1+tan(1
/2*d*x+1/2*c)^2)^2*tan(1/2*d*x+1/2*c)-6/d/a^4*arctan(tan(1/2*d*x+1/2*c))*b^2+1/d/a^2*arctan(tan(1/2*d*x+1/2*c)
)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^2/(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a^2-4*b^2>0)', see `assume?`
 for more details)Is 4*a^2-4*b^2 positive or negative?

________________________________________________________________________________________

mupad [B]  time = 3.57, size = 1655, normalized size = 10.89 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(c + d*x)^2/(a + b/cos(c + d*x))^2,x)

[Out]

((2*tan(c/2 + (d*x)/2)^3*(a^2 + 6*b^2))/a^3 + (tan(c/2 + (d*x)/2)*(3*a*b - a^2 + 6*b^2))/a^3 - (tan(c/2 + (d*x
)/2)^5*(3*a*b + a^2 - 6*b^2))/a^3)/(d*(a + b + tan(c/2 + (d*x)/2)^2*(a + 3*b) - tan(c/2 + (d*x)/2)^4*(a - 3*b)
 - tan(c/2 + (d*x)/2)^6*(a - b))) + (atan((8*tan(c/2 + (d*x)/2))/((8*b)/a + (24*b^2)/a^2 - (24*b^3)/a^3 + (144
*b^4)/a^4 - (144*b^5)/a^5 - 8) + (8*b*tan(c/2 + (d*x)/2))/(8*a - 8*b - (24*b^2)/a + (24*b^3)/a^2 - (144*b^4)/a
^3 + (144*b^5)/a^4) - (24*b^2*tan(c/2 + (d*x)/2))/(8*a*b - 8*a^2 + 24*b^2 - (24*b^3)/a + (144*b^4)/a^2 - (144*
b^5)/a^3) + (24*b^3*tan(c/2 + (d*x)/2))/(24*a*b^2 + 8*a^2*b - 8*a^3 - 24*b^3 + (144*b^4)/a - (144*b^5)/a^2) +
(144*b^4*tan(c/2 + (d*x)/2))/(24*a*b^3 - 8*a^3*b + 8*a^4 - 144*b^4 - 24*a^2*b^2 + (144*b^5)/a) + (144*b^5*tan(
c/2 + (d*x)/2))/(144*a*b^4 + 8*a^4*b - 8*a^5 - 144*b^5 - 24*a^2*b^3 + 24*a^3*b^2))*(a^2*1i - b^2*6i)*1i)/(a^4*
d) - (b*atan(((b*((a + b)*(a - b))^(1/2)*(2*a^2 - 3*b^2)*((8*tan(c/2 + (d*x)/2)*(144*a*b^6 - 3*a^6*b + a^7 - 7
2*b^7 - 48*a^2*b^5 - 48*a^3*b^4 + 19*a^4*b^3 + 7*a^5*b^2))/a^6 + (b*((a + b)*(a - b))^(1/2)*((8*(2*a^12 - 10*a
^11*b - 12*a^8*b^4 + 18*a^9*b^3 + 2*a^10*b^2))/a^9 - (8*b*tan(c/2 + (d*x)/2)*((a + b)*(a - b))^(1/2)*(2*a^2 -
3*b^2)*(8*a^10*b + 8*a^8*b^3 - 16*a^9*b^2))/(a^6*(a^6 - a^4*b^2)))*(2*a^2 - 3*b^2))/(a^6 - a^4*b^2))*1i)/(a^6
- a^4*b^2) + (b*((a + b)*(a - b))^(1/2)*(2*a^2 - 3*b^2)*((8*tan(c/2 + (d*x)/2)*(144*a*b^6 - 3*a^6*b + a^7 - 72
*b^7 - 48*a^2*b^5 - 48*a^3*b^4 + 19*a^4*b^3 + 7*a^5*b^2))/a^6 - (b*((a + b)*(a - b))^(1/2)*((8*(2*a^12 - 10*a^
11*b - 12*a^8*b^4 + 18*a^9*b^3 + 2*a^10*b^2))/a^9 + (8*b*tan(c/2 + (d*x)/2)*((a + b)*(a - b))^(1/2)*(2*a^2 - 3
*b^2)*(8*a^10*b + 8*a^8*b^3 - 16*a^9*b^2))/(a^6*(a^6 - a^4*b^2)))*(2*a^2 - 3*b^2))/(a^6 - a^4*b^2))*1i)/(a^6 -
 a^4*b^2))/((16*(162*a*b^7 - 2*a^7*b - 108*b^8 + 54*a^2*b^6 - 153*a^3*b^5 + 18*a^4*b^4 + 33*a^5*b^3 - 4*a^6*b^
2))/a^9 + (b*((a + b)*(a - b))^(1/2)*(2*a^2 - 3*b^2)*((8*tan(c/2 + (d*x)/2)*(144*a*b^6 - 3*a^6*b + a^7 - 72*b^
7 - 48*a^2*b^5 - 48*a^3*b^4 + 19*a^4*b^3 + 7*a^5*b^2))/a^6 + (b*((a + b)*(a - b))^(1/2)*((8*(2*a^12 - 10*a^11*
b - 12*a^8*b^4 + 18*a^9*b^3 + 2*a^10*b^2))/a^9 - (8*b*tan(c/2 + (d*x)/2)*((a + b)*(a - b))^(1/2)*(2*a^2 - 3*b^
2)*(8*a^10*b + 8*a^8*b^3 - 16*a^9*b^2))/(a^6*(a^6 - a^4*b^2)))*(2*a^2 - 3*b^2))/(a^6 - a^4*b^2)))/(a^6 - a^4*b
^2) - (b*((a + b)*(a - b))^(1/2)*(2*a^2 - 3*b^2)*((8*tan(c/2 + (d*x)/2)*(144*a*b^6 - 3*a^6*b + a^7 - 72*b^7 -
48*a^2*b^5 - 48*a^3*b^4 + 19*a^4*b^3 + 7*a^5*b^2))/a^6 - (b*((a + b)*(a - b))^(1/2)*((8*(2*a^12 - 10*a^11*b -
12*a^8*b^4 + 18*a^9*b^3 + 2*a^10*b^2))/a^9 + (8*b*tan(c/2 + (d*x)/2)*((a + b)*(a - b))^(1/2)*(2*a^2 - 3*b^2)*(
8*a^10*b + 8*a^8*b^3 - 16*a^9*b^2))/(a^6*(a^6 - a^4*b^2)))*(2*a^2 - 3*b^2))/(a^6 - a^4*b^2)))/(a^6 - a^4*b^2))
)*((a + b)*(a - b))^(1/2)*(2*a^2 - 3*b^2)*2i)/(d*(a^6 - a^4*b^2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sin ^{2}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)**2/(a+b*sec(d*x+c))**2,x)

[Out]

Integral(sin(c + d*x)**2/(a + b*sec(c + d*x))**2, x)

________________________________________________________________________________________